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Overview of Technical Guide 

This technical guide accompanies the main narrative document entitled “Understanding patterns of success 

among postsecondary CTE students: A diagnostic for institutional and system analysts.” The narrative  

document introduces the Diagnostic: background, goals, terms, overviews of analyses, example visualizations, 

and suggestions for further reading. Analysts should then refer to this technical guide for more details about 

how to execute the analyses: data decisions to make, data specifications, model considerations, practice  

interpreting statistical output, and more. 

Key Decision Points: The First Step 

Before engaging with the analyses described in this Diagnostic, there are several key decisions that should be 

made based on the context of your institution or system. First, decide which student populations you want to 

analyze. The students contained in the data analysis file at the time the analysis code is run will be the  

students represented in the results. If you want to focus on a particular population of students, you should only 

include that population in the data file. If you want a separate analysis for each of multiple student  

populations, consider creating a separate data file for each population and running the analysis code on each 

file. We recommend at least running separate analyses for students enrolled full- or part-time in the entry 

semester to account for potential differences in expected time to completion, intended credential completion, 

and other potential differences between these groups. You may want to consider excluding students in dual 

enrollment for similar reasons.

Second, decide how long of a time horizon you want to consider when examining whether a student has 

achieved a successful outcome. The time horizon you select should be based on the expected or desired time 

to completion for pathways included in the analysis. For example, you may want to examine a period of three 

years after entry for students entering pathways that typically lead to an associate degree and a shorter period 

for students entering pathways that typically lead to a certificate. 

Third, decide which cohorts you want to include in your analysis. Aggregating your analyses across cohorts 

will increase your sample size for any given analysis. This can provide a technical benefit, like helping to  

provide sufficient data to fit regression models. Including multiple cohorts can also enable you to see general 

trends for your institution across time rather than findings driven by some idiosyncrasies of a single cohort. 

However, if you know you made substantial changes to your programs, curriculum, or student support services 

in a particular year, you probably do not want to include cohorts from both before and after the changes in your 

analysis, or you risk obscuring any differences in student outcomes or changes in trends that resulted from 

those changes.

Fourth, decide how you want to define student pathways. These can be defined based on programs,  

meta-majors, or some other classification that makes sense in your context. The descriptions we provide are 

general to allow you to use pathway definition that will allow you to get the most relevant insights for your  

analysis.
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Fifth, decide which pathways you want to compare. We recommend limiting comparisons to a handful of  

pathways (loosely 2 to 4) at a time to allow you to see differences across pathways and engage in further  

inquiry based on those differences. This rough limit will ensure that the analysis results are digestible and that 

the comparisons are helpful. You may want to run through the Diagnostic multiple times using different  

combinations of pathways to inform discussions with various stakeholders at your institution or across your 

system. 

Finally, decide how you want to define successful outcomes for students. We define it to include instances of 

completion and transfer, where completion is defined as attainment of any credential and transfer is defined 

as enrolling in any other institution. You could also define completion more narrowly; for example, earning a 

credential in a student’s initial pathway or receiving the level of credential in which a student first expressed 

interest. Because completion and transfer are not mutually exclusive, we focus on a student’s first successful 

outcome – but you could also look at whether students ever complete, regardless of whether that occurs after 

a transfer event. Choose outcome events and definitions that are meaningful for your context. 

Once these decisions have been made, you are ready to engage with the Diagnostic. Before starting your  

analysis, we also recommend acquainting yourself with the statistical software you have available and  

installing any further programs you may need. Below, we describe the analyses generally so that analysts 

using a variety of softwares can reproduce these figures. For users of Stata (version 16.1 or later), we provide 

sample code that should be ready to run with little modification. Certain analyses also draw on Python, a free 

software you can install on any computer. More information about Python, including instructions for installing 

it, can be found at https:///www.python.org. We also recommend consulting with your IT department to discuss 

options for installing and using either of these programs. However, if you do not have access to Stata 16 or  

Python, you can still engage with the Diagnostic to guide the questions your institution is asking about its  

career and technical programs and to produce insightful, relevant analyses. 

Data

Please refer to the data specifications below for each section for a full account of the data and format required 

for these analyses. In general, you need access to a longitudinal dataset that follows students from the time of 

first enrollment at your institution/system. Longitudinal data is necessary to observe completion and transfer 

events as they occur over time. You also need access to student demographics data, transcript information, and 

if possible, National Student Clearinghouse (NSC) data to identify transfer and completion outcomes beyond 

students’ initial institution of enrollment.

Note about Example Visualizations

The sections below include example visualizations that are based on synthetic data, not data coming from any 

actual college or system. The synthetic data were constructed to show patterns similar to those that have been 

observed in actual data.



Description of Analyses 

Are there differences in success rates across pathways? 

In this analysis, we estimate the probability that a student in a given pathway will have a successful outcome 

event. We defined success in our analyses to be either completion of a credential of any form (associate degree, 

certificate, etc.) or transfer to another institution (depending on your context, you may want to specify this as 

transfer to a four-year institution or transfer to any institution). Please refer to the data specification section for 

more details about what data you will need to conduct this analysis yourself and in what format to conduct this 

analysis. 

The primary tool for Section 1 is a multinomial logistic regression model, a useful tool when there are  

multiple levels of the outcome variable. In this case, we have two levels of the outcome measuring student  

success: credential completion (1) or transfer (2). (These two levels are not inherently ordered; we could  

instead code transfer (1) and completion (2) without substantively altering the results.) The multinomial  

logistic regression allows us to estimate separate probabilities for each outcome in a single model, which is 

more efficient and allows us to account for the competing nature of the two types of success. Students are  

coded as either transferring or completing based on which event occurred first- for example, if a student  

completes a certificate and then transfers to a four-year institution, they are coded as a completer, not a  

transferer. 
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The first multinomial logistic regression model run expresses students’ outcomes only as a function of their 

initial pathway choice. Once this model has been fit to the data, we use it to predict for each pathway the  

probability of first completion and first transfer (i.e., the model is fit on student-level data but predicted  

values calculated at the pathway level). From these predictions, we should obtain a results matrix with one 

row per pathway-outcome, storing the predictions. For example, if you were analyzing four pathways and 

looking at transfer and completion for each, you should create a matrix with eight observations. Next, we 

reshape the results matrix from a long to a wide format, with one row per pathway. For example, if you were 

analyzing four pathways, your reshaped data would have four observations. Figure 1 illustrates these data 

transformations. 

Figure 1: Data transformation for predicted probabilities charts
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Importantly, you do not want to overwrite the original, student-level data used to fit the model to make these 

transformations, but rather should try to use the software’s working memory to create and temporarily store 

this new dataset of predicted values. If your software does not allow you to store temporary files, be sure to 

save your results to disk with a new name so that they are accessible for graphing. Whichever approach you 

take to generate a matrix of predicted results, we use these results to create a stacked bar chart showing the 

predicted probability of completion and transfer for each pathway. See Example Visualization 1a.



This analysis shows whether students’ likelihood of completion or transfer varies depending on what  

pathway they initially pursue. Critically, this is a descriptive analysis that does not account for student  

background characteristics, program context, or other factors that influence student outcomes. These results 

should not be interpreted to mean that one program is outperforming another, but rather to encourage deeper 

questioning and discussion across pathways. 

Are there differences for students with the same background characteristics? 

The next stage of this analysis investigates potential differences in student success across pathways after  

accounting for students’ background characteristics. Once again, we use a multinomial logistic regression 

model, with student outcome (completion or transfer) as the dependent variable. The difference is that now we 

include several student-level variables, in addition to a student’s initial pathway choice. These include gender 

(measured as a binary male/female), age at enrollment, race/ethnicity (disaggregated to Asian, Black,  

Latina/o/x, white, and other/unknown), Pell dollars awarded in the entry year, high school GPA, and mother’s 

education level (less than high school, high school, college or more). Finally, we interact each of these  

additional control variables with a student’s initial pathway choice, so that the relationships between student 

background characteristics and outcomes can vary by pathway. 

Like with the first multinomial logistic regression, we fit this model to student-level data, then predict  

probabilities of completion and transfer for each pathway, for a hypothetical student who has the average of 

each of the student traits included in the model. These results should again be saved to a pathway-outcome 

level matrix and transformed into a wide dataset with one pathway per row and each outcome as a separate 

column. Finally, this dataset should be used to create another stacked bar chart with the adjusted probabilities 

of successful outcomes by pathway. See Example Visualization 1b.
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Example Visualization 1b

By design, this chart looks similar to Example Visualization 1a. The useful information is in comparing how 

predicted probabilities of completion or transfer shift – or stay the same – after controlling, or “adjusting,” for 

background student traits. If the predicted probabilities remain largely unchanged in a pathway, this is evidence 

that student factors in the model – race, gender, Pell dollars awarded, etc. – matter less in whether or not a 

student is successful. If none of the predicted probabilities shift very much across any of the pathways, this is 

evidence that differences in student success outcomes are potentially due less to which students select into 

particular pathways. Instead, differences in success could be due more to pathway-specific factors and  

structures. If predicted probabilities within a pathway do differ after controlling for student traits, this is  

evidence that the selection of students into the pathway is explaining some of the observed success (or lack 

thereof). Compare the Engineer Tech pathway in Example Visualization 1a and 1b. After adjusting for student 

traits with the regression model, the probability of transfer in particular has dropped substantially. In other 

words, the regression model is suggesting that the probability of transfer among Engineer Tech students is  

due largely to students more likely to transfer selecting into Engineer Tech.

We can use the same regression model to further investigate, by pathway, which student factors are most  

associated with which success outcomes. Specifically, we can select one or two of the student traits  

included in the model, vary these while holding constant all the other traits, and see how predicted  

probabilities of success change. For illustration, see Example Visualization 1c. This chart uses the regression 

model to predict the probabilities of completion and transfer within each pathway, for different racial/ethnic 

groups, with varying high school GPAs, while holding fixed all other traits in the model. There is much we can 

learn from such a chart. One conclusion is that across pathway and racial/ethnic groups, a better high school 

GPA is less predictive of transfer than completion. In other words, across pathways and racial/ethnic groups, 

holding all other traits fixed, imagine two hypothetical students, one with a very good high school GPA and one 

with a more typical high school GPA. The student with the higher GPA has a much higher predicted probability 

of completing a credential than the lower-GPA peer, but a more modest predicted advantage in the probability 

of transfer compared to the lower-GPA peer.



Many similar charts are possible using results from the same model. Our sample diagnostic code includes 

charts that use the multinomial logistic regression to explore predicted probabilities by each of gender, high 

school GPA, age, Pell award, race/ethnicity, and mother’s highest level of education, all while holding 

constant the other variables. We also include examples of charts that explore varying pairwise combinations 

of these variables while holding all else constant. Feel free to experiment with your own versions of charts, 

too.

Example Visualization 1c

Are there differences in the timing of success across pathways?

A final chart for Section 1 displays the timing of student success, allowing you to compare not just the extent to 

which students are successful across pathways but the speed with which they achieve a successful outcome. 

The chart represents each cohort, in each pathway, in each term, as a single bar. The area of the bar in red 

below the x axis represents the proportion of students no longer enrolled. Above the x axis, the area of the bar 

represents the proportion of students still enrolled or those who have completed/transferred, with blue and 

turquoise distinguishing between the two. As the term is incremented, the graph conveys shifts in the  

proportion of students in each of the possible states (still enrolled, completer/transfer, no longer enrolled).  

See Example Visualization 1d.
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Example Visualization 1d

Level of Uniqueness

This file should be unique at the studentid-cohorttermindex level. In other words, each row in the data file 

should represent a unique term of enrollment for a unique student.

Only cohorttermindex and pathway values should vary over time for students in the data set. All other  

variables should be calculated based on the traits of a student at first entry into your institution and then held 

fixed for the rest of the terms, however many terms you decide to include.

We need multiple terms of data for each student in order to create the “waterfall” chart (see Example  

Visualization 1d), which requires observing a student over time. However, the multinomial logistic regression 

models only require a single observation per student (e.g., the first term, the term our sample code uses) 

because all the variables used in the model should be constant for a student over time: an outcome measured 

after however many terms you decide to include in your analysis, an initial pathway choice, and other covariates 

fixed at entry.  In other words, you should not fit the regression models for Section 1 using all the observations 

in the data set, because each student will have multiple rows. See example Stata code for more information.
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Notes About Regression Specification

The variables we include in the main regression model for this analysis are not the only factors that affect 

student outcomes, but they tend to be predictive of outcomes and are commonly recorded by institutions. 

Among variables that are relevant and available, we still made choices about what to include and exclude by 

default for the sake of successfully running a regression. For example, you can see from this data  

specification document that we ask for mother’s highest level of education – but not father’s highest level of 

education. Highest level of education for mother and father are often similar. This strong association makes it 

doubtful that adding father’s highest level of education to the model would contribute much more information, 

though it would make the regression more demanding on the data to run. However, you could also combine 

mother’s and father’s highest level of education into a single variable indicating whether a student is  

first-generation (i.e., neither parent has a college credential) or operationalize this information in a different 

way. 

If you have other information about your students that you want to include in the main regression, please feel 

free to do so by adding it to the data and then modifying the regression code appropriately.

Additionally, if you are conducting these analyses for multiple institutions and cohorts of students, we recom-

mend including indicators for students’ institution of enrollment and year of matriculation. You can also inter-

act the student-level covariates with the institutional indicators if you think the relationships between student 

characteristics and outcomes varies by institution.

Notes About Potential Regression Issues

Regression models are helpful because they allow us to control for some set of characteristics, making an “all 

else equal” comparison with respect to the included variables. Regressions are not without potential technical 

problems, however.

Be on the lookout for situations in which variables included in the main regression provide the same  

information. If such a scenario– called “collinearity” – arises, the redundant variables will be automatically 

dropped from the regression model by most analysis softwares, including Stata. The automatic omission of a 

variable can then cause problems for calculating margins, which are the predicted values plotted in the graphs 

for this section.

For example, mother’s highest level of education should include a level that represents “unknown.” This 

non-availability might result from a student completing the FAFSA but without providing the requested  

information about mother’s education. Or this non-availability might be a result of a student not completing the 

FAFSA at all. Imagine a scenario in which every incoming student who completed the FAFSA provided  

information about mother’s education. Then every student whose value of motheredlevel is the integer you 
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choose to represent “unknown” must not have completed the FAFSA at all. Those same students will not have 

any Pell grant information, which means they will all have a 1 for mi_pell. Now an indicator variable represent-

ing the “unknown” level of motheredlevel and mi_pell provide exactly the same information: identifying stu-

dents who didn’t complete the FAFSA. One of these variables will be automatically omitted from the regression, 

which can then prevent the analysis software from using the regression model results to do further calcula-

tions. You can proactively check whether this is an issue in your data by estimating correlation matrices among 

your covariates or by reviewing the construction of these variables in your data codebook. 

If you know in advance that two or more variables provide the same information, you should select which you 

want to include in your data and model. This may require you to modify the regression code.

Also, recall from above that the definition of completion you choose may mean more or fewer students qual-

ify as completers in your dataset. Defining completion in terms of finishing any credential would mean more 

students are coded as completers. Defining completion in terms of finishing the specific credential a student 

intended to complete upon entry would likely mean fewer coded as completers. Similarly, the time horizon over 

which you allow students in each cohort to complete may mean more or fewer students coded as completers. 

With too few completers in the data set, the main regression model might not converge. In that case, the model 

cannot be used to make predictions and generate charts.
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Description of Analysis 

When and why do students transfer across pathways and what are the outcomes of transfer? 

This analysis produces an interactive Sankey diagram showing flows of students across semesters. We start 

with a student-term level dataset in which students are grouped according to their initial pathway choice, in 

their entry term. This dataset is then collapsed to the pathway-transition level to include aggregate counts of 

the number of students moving into, remaining in, or transitioning out of each possible pathway or outcome 

(unenrolled, still enrolled in first pathway, transferred to each potential pathway, transferred to another  

institution, or completed a credential) in each term. See example Stata code for Section 2 for one way to  

approach collapsing the data in this manner. Regardless of the approach you take, it is important to ensure that 

a consistent number of students is included in the analysis within an entry pathway, across semester  

transitions -- for example, after a student completes a credential, they continue to be counted in the  

“completed” category moving forward rather than being dropped from the analysis. Figure 2 illustrates this 

transformation of the data. 

Section 2: Data and Analysis Guide
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We recommend setting up your data so that there are two term transitions per year. Depending on the  

institution’s context, this may require rolling summer events into the fall, winter events into the spring  

semesters, or some other aggregation based on context. This helps smooth out the analysis by limiting the 

transitions to those relevant to the most students (e.g., at many institutions, fewer students are enrolled over 

the summer). Or you could include more transitions and code all students who did not enroll for a winter or 

summer term as remaining in the same pathway, although this may mute patterns of student exit during 

these terms.

Once the data are set, we use Python to create the Sankey diagrams. See Example Visualization 2a. The  

diagram displays the size of each flow within each term transition, scaled to the number of students out of the 

starting total that the flow represents. Using Python enables interactivity such that you can hover your cursor 

over any particular flow and see the exact number of students making that transition between  

pathways/outcomes. 

While this analysis is useful for showing students’ movement across pathways and through outcome events, it 

is a descriptive, non-causal analysis only. The results should not be interpreted to mean that entering one 

pathway rather than another causes students to transfer pathways or to ultimately be successful or  

unsuccessful. Instead, the Sankey charts document students’ choices regarding their enrollment over time.

Example Visualization 2a 
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Figure 2: Data transformation for Sankey diagram



Another limitation of this analysis is that we do not show stacking of credentials or churn between institutions. 

Once a student has transferred or completed a credential, that classification is carried forward for the  

remaining terms included in the analysis. Students are coded as “completer” if they earn a credential before 

transferring and remain with this code for the rest of the analysis, potentially obscuring behavior in which a 

student earns multiple “stacked” credentials. Similarly, students who transfer to another institution and then 

re-enroll at your institution are coded as “transfer” as soon as the first transfer event takes place. Such  

students remain coded as “transfer” for the rest of the analysis, potentially obscuring repeated transferring 

that is potentially important. However, we do dynamically capture periods of stop out, where a student exits the 

institution and then re-enrolls; students are not coded as “unenrolled” indefinitely if they return. You should 

feel free to modify any of these decisions, if another approach would provide more insight in your context. 

Level of Uniqueness

This file should be unique at the studentid-cohorttermindex level. In other words, each row in the data file 

should represent a unique combination of studentid and cohorttermindex.

Data File Specification 
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Note About Student Subpopulations

The students contained in the data analysis file at the time the analysis code is run will be the students  

represented in the results. If you want to focus on a particular subpopulation of students, you should only  

include that subpopulation of students in the data file (e.g., just students who were part-time in their first term, 

just full-time, or all students).

Note About Python

Sankey charts showing student movements across pathways can quickly become visually overwhelming. We 

chose to set up these charts to plot numeric pathway codes, which are easier to display when many  

semester-to-semester transitions are shown. Using Python and the plotly graphing package make it possible 

to display student counts when one hovers the cursor over a given transition. This also saves space. There are 

downsides to using Python and plotly, however, because the charts must render in a browser to be explored 

fully. Static images of the charts will not allow this full exploration. We felt the Python-enabled interactivity 

outweighed these downsides. If you must have static images of charts and do not simply want to take  

screenshots, there are ways to automatically save out plotly charts as images. See the plotly package  

documentation for more information.

To make these Sankey charts using the provided code requires that Python and the plotly Python package be 

installed and accessible to Stata. Python is a free, open-source tool that your IT department should be able to 

help you set up, if you do not already have it. If your Stata installation has trouble accessing your Python  

installation, Stata documentation available online can help you troubleshoot this issue. The installation process 

for plotly can vary depending on how Python has been installed, so this might be another task for which your IT 

department should be consulted.

Should you desire pathway codes to be strings instead of numeric values (e.g., “Business and Social  

Sciences” instead of 1) in the Sankey charts, please feel free to alter the provided code, which was set up with 

only numeric codes in mind. You might consider using abbreviated pathway titles though, to minimize issues 

with space and overplotting.

At this time, to our knowledge, the plotly package does not offer node sorting options. This means that when 

the Sankey charts render in the browser, the pathway nodes may appear in a different order from transition to 

transition. It is also possible that if and when the charts are re-run and re-rendered, the pathway node ordering 

from transition to transition may be different than what they were for previous chart renderings.
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Description of Analysis

Are there gateway courses that are obstructing completion in some pathways? 

This analysis investigates core courses that are required for students to complete within a pathway. These may 

be general requirements, such as introductory math or English, or pathway-specific requirements. To prepare 

the necessary data, we start with a student-course-year-level dataset to observe all of the course attempts 

made by students included in the analysis. We then transform this into a pathway-course level dataset that 

captures the number of students attempting and succeeding in the required courses within their first three 

years of enrollment. Next, we use these numbers to calculate the proportion of students who fail each course 

on the first attempt. Finally, we calculate the probability that students completed a credential within three 

years of entry, separately among those students who passed or failed the course on the first attempt. To cal-

culate this probability among those who passed (failed), divide the number of students who passed (failed) the 

course and completed a credential in a pathway by the total number of students who started in that pathway, 

attempted the course, and passed (failed) that initial attempt. We take the difference of these two probabilities 

to calculate the difference in the probability of completing a credential between those who initially passed or 

failed the required course. Figure 3 illustrates this data transformation. 
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We then create an interactive scatterplot that plots the share of students failing a course against the change in 

probability of completing a credential if the course is failed initially. The size of each point reflects the number 

of students attempting the course. When interpreting this chart, we can think of large points with a high failure 

rate and a large decrease in probability of completion (e.g., a large point in the top right of the graph) as the 

most concerning from a student success perspective. See Example Visualization 3a. When these scatterplots 

are rendered in the browser, you can scroll over an individual point to see the course title, number of  

attempters, the probability of completion among those who initially pass, and the probability of completion 

among those who initially fail. 

Note that because some courses might not be unique to a single pathway (especially general education  

courses), courses may appear in multiple scatterplots. The information provided is not necessarily redundant, 

however, because the same course might play a different gatekeeping role in different pathways. 

Example Visualization 3a
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Figure 3: Data Transformations for Gatekeeper Course Analysis

Level of Uniqueness

This file should be unique at the pathway-course_id level. In other words, each row in the data file should rep-

resent a unique combination of pathway and course.
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Description of Analysis

Why do pathway completion rates differ? How do students accumulate credits and progress in their pathway over 

time? 

We begin this analysis by comparing college-level credit accumulation over time across pathways. The time 

period included in your data should reflect a reasonable time frame for your context; for example, three years 

would reflect 150% of expected time to completion of an associate degree. To get the data into a form ready for 

graphing, we start with a student-term-course-level dataset and calculate, for each term, each student’s total 

number of college-level (excluding developmental) credits earned and attempted. Depending on your  

institutional context and popularity of summer and/or winter terms, you may want to roll completion events 

into the fall and spring semesters. We then calculate each pathway’s average cumulative college-level credits 

earned and attempted for each term, sorted with term ascending. Figure 4 shows this data transformation.
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Figure 4: Data transformations for analysis of college-level credits earned vs. attempted

Once you have your data in the form of the second table in Figure 4, you are ready to graph your results in the 

form of Example Visualization 4a.

Example Visualization 4a

In the second chart, we investigate the importance of early momentum in predicting continued progress.  

Specifically, we want a chart that plots, by pathway, average college-level credit accumulation among three 

groups of students: 1) those who were below the 25th percentile in the entry term for college-level credits 

earned, among other students entering the pathway 2) those who were between the 25th and 75th percentiles 

and 3) those who were above the 75th percentile. See Example Visualization 4b.
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Example Visualization 4b

To get your data into the form required for this graph, you once again should begin with a student-term-course-
level data set. Once again, calculate for each student the number of college-level credits earned in each term. 
Then create a new variable that assigns each student a value ranging from 1-3, depending on whether they fell 
below the 25th percentile of college credits earned in the first term among pathway peers; between the 25th 
and 75th percentiles; or above the 75th percentile. This percentile bin value should be constant for a student 
across terms for the rest of the analysis. Next, collapse the data further to take the average of college-level 
credits earned by pathway, by term, by percentile bin. Finally, calculate by pathway, term (with terms in as-
cending order), and percentile bin the cumulative sum of average college-level credits earned. See example 
Stata code for Section 4 for one possible approach to this data preparation.

In the final graph, we want to investigate the importance of early credit momentum for eventual completion or 
transfer within three years. Specifically, we want to investigate whether credits earned in the first term predict 
student completion and transfer rates within three years of entry. Further, we want to know whether  
college-level credits or any credits (including developmental) differ in how well they predict  
completion/transfer rates. See Example Visualization 4c.

Example Visualization 4c
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For data preparation, start once again with a student-term-course-level data set. From this, calculate for each 

student, in each pathway, the total number of college-level credits earned in the entry term and the total  

number of credits earned at any level in the entry term. Next, you will need to create a “coarsened” version of 

each of these variables. We recommend using bins of 3 credits. For example, if Student A earned 3  

college-level credits in the entry term and Student B earned 4.5, consider both students to have earned a  

college-level credit value falling between 3 and 6; they should both have the same value (3, 6, or something 

else possibly) for the coarsened version of college-level credits earned. Next, merge on an indicator (a variable 

with a value of 0 or 1) by Student ID for whether a student completed a credential or transferred within three 

years of entry. Finally, you will need to collapse your data twice – once for each coarsened measure of  

college-level credits earned and any credits earned. Each collapse should get you the rate of  

completion/transfer by pathway, by credit bin value. Append the results of each collapse together while  

creating an additional indicator for whether a given data row is for college-level credits earned or any credits 

earned. The final data set for graphing should have columns for pathway, credit bin, completion/transfer rate, 

and an indicator for credit bin type (college-level credits or any credits). Rows should be unique by pathway, 

credit bin, and credit bin type. See example Stata code for Section 4 for one possible approach to this data 

preparation.

As with all the analyses in this Diagnostic, these graphs are descriptive, not causal. They should not be  

interpreted to mean that, for example, instruction is better in one pathway than another, allowing students in 

that pathway to accumulate credits at a faster rate. Instead, they should be used to help guide discussions and 

further inquiry at your institution or system.

Level of Uniqueness

This file should be unique at the studentid-cohorttermindex level. In other words, each row in the data file 

should represent a unique combination of studentid and cohorttermindex.
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